Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Investig Health Psychol Educ ; 13(11): 2642-2680, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998074

RESUMO

This literature review aims to analyze studies published by researchers on the topic of the relationship between the psychological constructs of the Dark Triad and Cognitive Empathy. This study hypothesizes how having good cognitive empathic skills could benefit people who demonstrate Dark Triad traits, as this could facilitate the implementation of manipulative strategies. Through the process of identifying studies via databases and registers, 23 studies were included in this literature review, and the results and theories brought forward by the researchers find more agreement regarding the individual components of the Dark Triad than the whole construct: narcissism seems to have, for the most part, relatively small and typical positive correlations (more than 50% of correlations), Machiavellianism has relatively small and typical negative relationships (about 80% of correlations), and psychopathy has relatively large negative relationships (about 90% of correlations). This study conveys that Machiavellians and psychopaths, having reduced empathic abilities, use manipulation techniques that do not have to do with empathy (for example seduction, intimidation etc.), while narcissists would be, among these three dimensions, those most likely to understand others' states of mind and thus be able to use this knowledge to their advantage-although there are doubts about the veracity of the statements and answers given by narcissists in the tests administered to them. This literature review could be a valid aid to professionals dealing with people who exhibit Dark Triad traits; understanding how those exhibiting Dark Triad traits manage their empathic abilities, the areas in which the various dimensions show deficits or not, and how they act to implement their manipulative and controlling tactics could aid in the development of more effective helping strategies to be utilized in therapy settings.

2.
Mol Neurobiol ; 60(9): 5395-5410, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37314654

RESUMO

Niemann-Pick type C1 (NPC1) disease is a lysosomal lipid storage disorder due to mutations in the NPC1 gene resulting in the accumulation of cholesterol within the endosomal/lysosomal compartments. The prominent feature of the disorder is the progressive Purkinje cell degeneration leading to ataxia.In a mouse model of NPC1 disease, we have previously demonstrated that impaired Sonic hedgehog signaling causes defective proliferation of granule cells (GCs) and abnormal cerebellar morphogenesis. Studies conducted on cortical and hippocampal neurons indicate a functional interaction between Sonic hedgehog and brain-derived neurotrophic factor (BDNF) expression, leading us to hypothesize that BDNF signaling may be altered in Npc1 mutant mice, contributing to the onset of cerebellar alterations present in NPC1 disease before the appearance of signs of ataxia.We characterized the expression/localization patterns of the BDNF and its receptor, tropomyosin-related kinase B (TrkB), in the early postnatal and young adult cerebellum of the Npc1nmf164 mutant mouse strain.In Npc1nmf164 mice, our results show (i) a reduced expression of cerebellar BDNF and pTrkB in the first 2 weeks postpartum, phases in which most GCs complete the proliferative/migrative program and begin differentiation; (ii) an altered subcellular localization of the pTrkB receptor in GCs, both in vivo and in vitro; (iii) reduced chemotactic response to BDNF in GCs cultured in vitro, associated with impaired internalization of the activated TrkB receptor; (iv) an overall increase in dendritic branching in mature GCs, resulting in impaired differentiation of the cerebellar glomeruli, the major synaptic complex between GCs and mossy fibers.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ataxia Cerebelar , Feminino , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Diferenciação Celular , Ataxia Cerebelar/metabolismo , Colesterol/metabolismo
3.
Prog Lipid Res ; 91: 101239, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37385352

RESUMO

Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers. These pleiotropic bioactive lipids can directly and/or indirectly influence adult hippocampal neurogenesis (AHN) by modulating, both positively and negatively, multiple molecular and cellular processes in the hippocampal niche, depending on the cell type or stage of differentiation. Firstly, eCBs act directly as cell-intrinsic factors, cell-autonomously produced by NSCs following their stimulation. Secondly, in many, if not all, niche-associated cells, including some local neuronal and nonneuronal elements, the eCB system indirectly modulates the neurogenesis, linking neuronal and glial activity to regulating distinct stages of AHN. Herein, we discuss the crosstalk of the eCB system with other neurogenesis-relevant signal pathways and speculate how the hippocampus-dependent neurobehavioral effects elicited by (endo)cannabinergic medications are interpretable in light of the key regulatory role that eCBs play on AHN.


Assuntos
Endocanabinoides , Hipocampo , Adulto , Humanos , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Transdução de Sinais
4.
Eur J Investig Health Psychol Educ ; 13(5): 861-869, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37232703

RESUMO

Orthorexia nervosa (ON) is characterized by an intense avoidance of foods considered unhealthy, obsession with healthy eating behaviors, and pathological fixation on healthy foods. Although there are still debates in the literature about the psychological factors and symptoms of ON, it should be noted that many of the symptoms share common features with obsessive compulsive disorder (OCD). The aim of the present study was to investigate the relationship between ON and OCD with its subtypes. In this framework, the cross-sectional study was conducted with an opportunistic sample of 587 participants (86% women and 14% men), with an average age of 29.32 (s.d. = 11.29; age range = 15-74). Our work showed that almost all OCD subtypes were largely correlated with ON. The lowest correlation was for "Checking" and the highest for "Obsession". Overall, the OCD subtypes (i.e., Indecisiveness, Just Right, Obsession, and Hoarding) were more strongly associated with ON measures, while subtypes Checking and Contamination, although positively associated, had lower correlation coefficients.

5.
Biomedicines ; 11(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37238963

RESUMO

Friedreich's ataxia (FRDA) is an autosomal, recessive, inherited neurodegenerative disease caused by the loss of activity of the mitochondrial protein frataxin (FXN), which primarily affects dorsal root ganglia, cerebellum, and spinal cord neurons. The genetic defect consists of the trinucleotide GAA expansion in the first intron of FXN gene, which impedes its transcription. The resulting FXN deficiency perturbs iron homeostasis and metabolism, determining mitochondrial dysfunctions and leading to reduced ATP production, increased reactive oxygen species (ROS) formation, and lipid peroxidation. These alterations are exacerbated by the defective functionality of the nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor acting as a key mediator of the cellular redox signalling and antioxidant response. Because oxidative stress represents a major pathophysiological contributor to FRDA onset and progression, a great effort has been dedicated to the attempt to restore the NRF2 signalling axis. Despite this, the beneficial effects of antioxidant therapies in clinical trials only partly reflect the promising results obtained in preclinical studies conducted in cell cultures and animal models. For these reasons, in this critical review, we overview the outcomes obtained with the administration of various antioxidant compounds and critically analyse the aspects that may have contributed to the conflicting results of preclinical and clinical studies.

6.
Mech Ageing Dev ; 211: 111802, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958540

RESUMO

Reactive oxygen species (ROS) is a term that defines a group of unstable compounds derived from exogenous sources or endogenous metabolism. Under physiological conditions, low levels of ROS play a key role in the regulation of signal transduction- or transcription-mediated cellular responses. In contrast, excessive and uncontrolled loading of ROS results in a pathological state known as oxidative stress (OS), a leading contributor to aging and a pivotal factor for the onset and progression of many disorders. Evolution has endowed cells with an antioxidant system involved in stabilizing ROS levels to a specific threshold, maintaining ROS-induced signalling function and limiting negative side effects. In mammals, a great deal of evidence indicates that females defence against ROS is more proficient than males, determining a longer lifespan and lower incidence of most chronic diseases. In this review, we will summarize the most recent sex-related differences in the regulation of redox homeostasis. We will highlight the peculiar aspects of the antioxidant defence in sex-biased diseases whose onset or progression is driven by OS, and we will discuss the molecular, genetic, and evolutionary determinants of female proficiency to cope with ROS.


Assuntos
Antioxidantes , Caracteres Sexuais , Animais , Feminino , Masculino , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Estresse Oxidativo , Homeostase , Mamíferos
7.
Cerebellum ; 22(1): 102-119, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35040097

RESUMO

Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.


Assuntos
Doença de Niemann-Pick Tipo C , Masculino , Camundongos , Animais , Humanos , Doença de Niemann-Pick Tipo C/genética , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Neurônios/metabolismo , Colesterol/metabolismo , Mamíferos
8.
J Cell Physiol ; 237(12): 4563-4579, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36322609

RESUMO

The loss of NPC1 or NPC2 function results in cholesterol and sphingolipid dyshomeostasis that impairs developmental trajectories, predisposing the postnatal brain to the appearance of pathological signs, including progressive and stereotyped Purkinje cell loss and microgliosis. Despite increasing evidence reporting the activation of pro-inflammatory microglia as a cardinal event of NPC1 disease progression at symptomatic stages both in patients and preclinical models, how microglia cells respond to altered neurodevelopmental dynamics remains not completely understood. To gain an insight on this issue, we have characterized patterns of microglia activation in the early postnatal cerebellum and young adult olfactory bulb of the hypomorphic Npc1nmf164 mouse model. Previous evidence has shown that both these areas display a number of anomalies affecting neuron and glial cell proliferation and differentiation, which largely anticipate cellular changes and clinical signs, raising our interest on how microglia interplay to these changes. Even so, to separate the contribution of cues provided by the dysfunctional microenvironment we have also studied microglia isolated from mice of increasing ages and cultured in vitro for 1 week. Our findings show that microglia of both cerebellum and olfactory bulb of Npc1nmf164 mice adopt an activated phenotype, characterized by increased cell proliferation, enlarged soma size and de-ramified processes, as well as a robust phagocytic activity, in a time- and space-specific manner. Enhanced phagocytosis associates with a profound remodeling of gene expression signatures towards gene products involved in chemotaxis, cell recognition and engulfment, including Cd68 and Trem2. These early changes in microglia morphology and activities are induced by region-specific developmental anomalies that likely anticipate alterations in neuronal connectivity. As a proof of concept, we show that microglia activation within the granule cell layer and glomerular layer of the olfactory bulb of Npc1nmf164 mice is associated with shortfalls in fine odor discrimination.


Assuntos
Microglia , Doença de Niemann-Pick Tipo C , Percepção Olfatória , Animais , Camundongos , Encéfalo/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Odorantes , Receptores Imunológicos/metabolismo , Fagócitos/metabolismo
9.
Neurobiol Dis ; 163: 105606, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974125

RESUMO

Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the mammalian brain, essential not only to the development of the central nervous system but also to synaptic plasticity. BDNF is present in various brain areas, but highest levels of expression are seen in the cerebellum and hippocampus. After birth, BDNF acts in the cerebellum as a mitogenic and chemotactic factor, stimulating the cerebellar granule cell precursors to proliferate, migrate and maturate, while in the hippocampus BDNF plays a fundamental role in synaptic transmission and plasticity, representing a key regulator for the long-term potentiation, learning and memory. Furthermore, the expression of BDNF is highly regulated and changes of its expression are associated with both physiological and pathological conditions. The purpose of this review is to provide an overview of the current state of knowledge on the BDNF biology and its neurotrophic role in the proper development and functioning of neurons and synapses in two important brain areas of postnatal neurogenesis, the cerebellum and hippocampus. Dysregulation of BDNF expression and signaling, resulting in alterations in neuronal maturation and plasticity in both systems, is a common hallmark of several neurodevelopmental diseases, such as autism spectrum disorder, suggesting that neuronal malfunction present in these disorders is the result of excessive or reduced of BDNF support. We believe that the more the relevance of the pathophysiological actions of BDNF, and its downstream signals, in early postnatal development will be highlighted, the more likely it is that new neuroprotective therapeutic strategies will be identified in the treatment of various neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Animais , Humanos , Neurogênese/fisiologia , Sinapses/metabolismo
10.
Neurosci Res ; 170: 364-369, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33352204

RESUMO

Previous studies have shown inconsistent results regarding the effect of the Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene on personality and cognition. Here, nonclinical Caucasian university students of Italian origin were administered the Temperament and Character Inventory-Revised, Tellegen Absorption Scale, Differential Attentional Processes Inventory, and Waterloo-Stanford Group Scale of Hypnotic Susceptibility. We found that the COMT Val158Met polymorphism was significantly associated with the disorderliness facet of novelty seeking (NS4) and that sex was a moderator of this association. Females with the Met/Met genotype showed higher NS4 scores compared to those with the Val/Met and Val/Val genotypes. No significant genotype effect was found for males. Additionally, we failed to find a significant effect of the COMT gene on attention and hypnotic suggestibility measures. These results provide further evidence for a sex-specific influence on the gene-behaviour associations.


Assuntos
Catecol O-Metiltransferase , Comportamento Exploratório , Feminino , Humanos , Masculino , Catecol O-Metiltransferase/genética , Caráter , Genótipo , Polimorfismo de Nucleotídeo Único
11.
Redox Biol ; 38: 101791, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197769

RESUMO

Ferroptosis is an iron-dependent cell death caused by impaired glutathione metabolism, lipid peroxidation and mitochondrial failure. Emerging evidences report a role for ferroptosis in Friedreich's Ataxia (FRDA), a neurodegenerative disease caused by the decreased expression of the mitochondrial protein frataxin. Nrf2 signalling is implicated in many molecular aspects of ferroptosis, by upstream regulating glutathione homeostasis, mitochondrial function and lipid metabolism. As Nrf2 is down-regulated in FRDA, targeting Nrf2-mediated ferroptosis in FRDA may be an attractive option to counteract neurodegeneration in such disease, thus paving the way to new therapeutic opportunities. In this study, we evaluated ferroptosis hallmarks in frataxin-silenced mouse myoblasts, in hearts of a frataxin Knockin/Knockout (KIKO) mouse model, in skin fibroblasts and blood of patients, particularly focusing on ferroptosis-driven gene expression, mitochondrial impairment and lipid peroxidation. The efficacy of Nrf2 inducers to neutralize ferroptosis has been also evaluated.


Assuntos
Ferroptose , Ataxia de Friedreich , Doenças Neurodegenerativas , Animais , Ataxia de Friedreich/genética , Humanos , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética
12.
Biomolecules ; 10(11)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202971

RESUMO

Ferroptosis is an iron-dependent form of regulated cell death, arising from the accumulation of lipid-based reactive oxygen species when glutathione-dependent repair systems are compromised. Lipid peroxidation, mitochondrial impairment and iron dyshomeostasis are the hallmark of ferroptosis, which is emerging as a crucial player in neurodegeneration. This review provides an analysis of the most recent advances in ferroptosis, with a special focus on Friedreich's Ataxia (FA), the most common autosomal recessive neurodegenerative disease, caused by reduced levels of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and antioxidant defenses. The hypothesis is that the iron-induced oxidative damage accumulates over time in FA, lowering the ferroptosis threshold and leading to neuronal cell death and, at last, to cardiac failure. The use of anti-ferroptosis drugs combined with treatments able to activate the antioxidant response will be of paramount importance in FA therapy, such as in many other neurodegenerative diseases triggered by oxidative stress.


Assuntos
Ferroptose/fisiologia , Ataxia de Friedreich/epidemiologia , Ataxia de Friedreich/metabolismo , Ferro/metabolismo , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/metabolismo , Cardiomiopatias/epidemiologia , Cardiomiopatias/metabolismo , Humanos , Peroxidação de Lipídeos/fisiologia , Estresse Oxidativo/fisiologia
13.
Epigenetics ; 15(8): 781-799, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32019393

RESUMO

The Presenilin1 (PSEN1) gene encodes the catalytic peptide of the γ-secretase complex, a key enzyme that cleaves the amyloid-ß protein precursor (AßPP), to generate the amyloid-ß (Aß) peptides, involved in Alzheimer's Disease (AD). Other substrates of the γ-secretase, such as E-cadherin and Notch1, are involved in neurodevelopment and haematopoiesis. Gene-specific DNA methylation influences PSEN1 expression in AD animal models. Here we evaluated canonical and non-canonical cytosine methylation patterns of the PSEN1 5'-flanking during brain development and AD progression, in DNA extracted from the frontal cortex of AD transgenic mice (TgCRND8) and post-mortem human brain. Mapping CpG and non-CpG methylation revealed different methylation profiles in mice and humans. PSEN1 expression only correlated with DNA methylation in adult female mice. However, in post-mortem human brain, lower methylation, both at CpG and non-CpG sites, correlated closely with higher PSEN1 expression during brain development and in disease progression. PSEN1 methylation in blood DNA was significantly lower in AD patients than in controls. The present study is the first to demonstrate a temporal correlation between dynamic changes in PSEN1 CpG and non-CpG methylation patterns and mRNA expression during neurodevelopment and AD neurodegeneration. These observations were made possible by the use of an improved bisulphite methylation assay employing primers that are not biased towards non-CpG methylation. Our findings deepen the understanding of γ-secretase regulation and support the hypothesis that epigenetic changes can promote the pathophysiology of AD. Moreover, they suggest that PSEN1 DNA methylation in peripheral blood may provide a biomarker for AD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Metilação de DNA , Presenilina-1/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Ilhas de CpG , Feminino , Humanos , Masculino , Camundongos , Presenilina-1/metabolismo
14.
J Cell Physiol ; 235(4): 3393-3401, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31552693

RESUMO

Activation of Akt/Protein Kinase B (PKB) by phosphatidylinositol-3-kinase (PI3K) controls several cellular functions largely studied in mammalian cells, including preimplantation embryos. We previously showed that early mouse embryos inherit active Akt from oocytes and that the intracellular localization of this enzyme at the two-cell stage depends on the T-cell leukemia/lymphoma 1 oncogenic protein, Tcl1. We have now investigated whether Akt isoforms, namely Akt1, Akt2 and Akt3, exert a specific role in blastomere proliferation during preimplantation embryo development. We show that, in contrast to other Akt family members, Akt2 enters male and female pronuclei of mouse preimplantation embryos at the late one-cell stage and thereafter maintains a nuclear localization during later embryo cleavage stages. Depleting one-cell embryos of single Akt family members by microinjecting Akt isoform-specific antibodies into wild-type zygotes, we observed that: (a) Akt2 is necessary for normal embryo progression through cleavage stages; and (b) the specific nuclear targeting of Akt2 in two-cell embryos depends on Tcl1. Our results indicate that preimplantation mouse embryos have a peculiar regulation of blastomere proliferation based on the activity of the Akt/PKB family member Akt2, which is mediated by the oncogenic protein Tcl1. Both Akt2 and Tcl1 are essential for early blastomere proliferation and embryo development.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas/genética , Animais , Blastocisto/metabolismo , Blastômeros/metabolismo , Proliferação de Células/genética , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Gravidez , Isoformas de Proteínas
15.
Mitochondrion ; 51: 15-21, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31862414

RESUMO

It has long been known that there is decreased mitochondrial function in several tissues of Niemann-Pick C1 model mice and cultured cells. These defects contribute to the accumulation of Reactive Oxygen Species (ROS) and tissue damage. It is also well established that there is increased unesterified cholesterol, stored in late endosomes/lysosomes, in many tissues in mutant humans, mouse models, and mutant cultured cells. Using a mouse model with an NPC1 point mutation that is more typical of the most common form of the disease, and highly purified liver mitochondria, we find markedly decreased mitochondrial membrane cholesterol. This is compared to previous reports of increased mitochondrial membrane cholesterol. We also find that, although in wild-type or heterozygous mitochondria cytochrome c oxidase (COX) activity decreases with age as expected, surprisingly, COX activity in homozygous mutant mice improves with age. COX activity is less than half of wild-type amounts in young mutant mice but later reaches wild-type levels while total liver cholesterol is decreasing. Mutant mice also contain a decreased number of mitochondria that are morphologically abnormal. We suggest that the decreased mitochondrial membrane cholesterol is causative for the mitochondrial energy defects. In addition, we find that the mitochondrial stress regulator protein MNRR1 can stimulate NPC1 synthesis and is deficient in mutant mouse livers. Furthermore, the age curve of MNRR1 deficiency paralleled levels of total cholesterol. The role of such altered mitochondria in initiating the abnormal autophagy and neuroinflammation found in NPC1 mouse models is discussed.


Assuntos
Membrana Celular/metabolismo , Colesterol/análise , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias Hepáticas/metabolismo , Doença de Niemann-Pick Tipo C/genética , Fatores de Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fígado/metabolismo , Masculino , Camundongos , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/patologia
16.
Cell Cycle ; 18(22): 3055-3063, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31564197

RESUMO

The oncogenic ability of the T-cell leukemia/lymphoma 1 gene, TCL1, has captured the attention in the field of prolymphocytic T-cell and B-cell chronic leukemias for more than two decades. However, the finding that TCL1 is also expressed in totipotent cells of the mouse preimplantation embryos and that it is among the 10 genes, including the transcription factors Nanog, Oct4, Sox2, Tbx3, and Esrrb, that are required for maintaining the mitotic self-renewal state of embryonic stem cells, raises a great interest. In this review, we highlight newly acquired evidence pinpointing TCL1 as a crucial regulator of metabolic pathways that dictate somatic cell reprogramming toward pluripotency. In our opinion, this feature provides a relevant hint for reframing the role that this factor plays at early stages of mammalian embryo development and in tumorigenesis. Hence, the TCL1-dependent enhancement of serine/threonine AKT/PKB kinase activity favoring cell proliferation appears to be associated to the promotion of glucose transport and activation of glycolytic pathways. This is also consistent with the TCL1 ability to suppress mitochondrial biogenesis and oxygen consumption, downplaying the contribution of oxidative phosphorylation to energy metabolism. It thus appears that TCL1 masters the direction of energy metabolism toward the glycolytic pathway to meet a critical metabolic requirement that goes beyond the mere ATP production. For instance, the synthesis of glycolytic intermediates that are required for DNA synthesis likely represents the most pressing cellular need for both cleavage-stage embryos and rapidly proliferating tumor cells.


Assuntos
Reprogramação Celular/genética , Células-Tronco Embrionárias/metabolismo , Metabolismo Energético/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Metabolismo Energético/fisiologia , Glicólise/genética , Glicólise/fisiologia , Humanos , Camundongos , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética
17.
J Appl Genet ; 60(3-4): 357-365, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31485950

RESUMO

The Npc1nih/nih-null model and the Npc1nmf164/nmf164 hypomorph models of Niemann-Pick C1 (NPC1) disease show defects in olfaction. We have tested the effects of the life-prolonging treatment hydroxypropyl-beta-cyclodextrin (HPBCD) on olfaction and neural stem cell numbers when delivered either systemically or by nasal inhalation. Using the paradigm of finding a hidden cube of food after overnight food deprivation, Npc1nih/nih homozygous mice showed a highly significant delay in finding the food compared with wild-type mice. Npc1nmf164/nmf164 homozygous mice showed an early loss of olfaction which was mildly corrected by somatic delivery of HPBCD which also increased the number of neural stem cells in the mutant but did not change the number in wild-type mice. In contrast, nasal delivery of this drug, at 1/5 the dosage used for somatic delivery, to Npc1nmf164/nmf164 mutant mice delayed loss of olfaction but the control of nasal delivered saline did so as well. The nasal delivery of HPBCD to wild-type mice caused loss of olfaction but nasal delivery of saline did not. Neural stem cell counts were not improved by nasal therapy with HPBCD. We credit the delay in olfaction found with the treatment, a delay which was also found for time of death, to a large amount of stimulation the mice received with handling during the nasal delivery.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Olfato/efeitos dos fármacos , Administração Intranasal , Animais , Proliferação de Células/efeitos dos fármacos , Colesterol , Modelos Animais de Doenças , Humanos , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Olfato/genética
18.
Neurobiol Dis ; 130: 104531, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302243

RESUMO

The dyshomeostasis of intracellular cholesterol trafficking is typical of the Niemann-Pick type C (NPC) disease, a fatal inherited lysosomal storage disorder presenting with progressive neurodegeneration and visceral organ involvement. In light of the well-established relevance of cholesterol in regulating the endocannabinoid (eCB) system expression and activity, this study was aimed at elucidating whether NPC disease-related cholesterol dyshomeostasis affects the functional status of the brain eCB system. To this end, we exploited a murine model of NPC deficiency for determining changes in the expression and activity of the major molecular components of the eCB signaling, including cannabinoid type-1 and type-2 (CB1 and CB2) receptors, their ligands, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), along with their main synthesizing/inactivating enzymes. We found a robust alteration of distinct components of the eCB system in various brain regions, including the cortex, hippocampus, striatum and cerebellum, of Npc1-deficient compared to wild-type pre-symptomatic mice. Changes of the eCB component expression and activity differ from one brain structure to another, although 2-AG and AEA are consistently found to decrease and increase in each structure, respectively. The thorough biochemical characterization of the eCB system was accompanied by a behavioral characterization of Npc1-deficient mice using a number of paradigms evaluating anxiety, locomotor activity, spatial learning/memory abilities, and coping response to stressful experience. Our findings provide the first description of an early and region-specific alteration of the brain eCB system in NPC and suggest that defective eCB signaling could contribute at producing and/or worsening the neurological symptoms of this disorder.


Assuntos
Encéfalo/metabolismo , Colesterol/metabolismo , Endocanabinoides/metabolismo , Homeostase/fisiologia , Doença de Niemann-Pick Tipo C/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
19.
Front Cell Neurosci ; 13: 226, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178699

RESUMO

The Niemann-Pick type C1 (NPC1) is a rare genetic disease characterized by the accumulation of endocytosed cholesterol and other lipids in the endosome/lysosome compartments. In the brain, the accumulation/mislocalization of unesterified cholesterol, gangliosides and sphingolipids is responsible for the appearance of neuropathological hallmarks, and progressive neurological decline in patients. The imbalance of unesterified cholesterol and other lipids, including GM2 and GM3 gangliosides, alters a number of signaling mechanisms impacting on the overall homeostasis of neurons. In particular, lipid depletion experiments have shown that lipid rafts regulate the cell surface expression of dopamine transporter (DAT) and modulate its activity. Dysregulated dopamine transporter's function results in imbalanced dopamine levels at synapses and severely affects dopamine-induced locomotor responses and dopamine receptor-mediated synaptic signaling. Recent studies begin to correlate dopaminergic stimulation with the length and function of the primary cilium, a non-motile organelle that coordinates numerous signaling pathways. In particular, the absence of dopaminergic D2 receptor stimulation induces the elongation of dorso-striatal neuron's primary cilia. This study has used a mouse model of the NPC1 disease to correlate cholesterol dyshomeostasis with dorso-striatal anomalies in terms of DAT expression and primary cilium (PC) length and morphology. We found that juvenile Npc1nmf164 mice display a reduction of dorso-striatal DAT expression, with associated alterations of PC number, length-frequency distribution, and tortuosity.

20.
J Cell Physiol ; 234(10): 18349-18360, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912127

RESUMO

Proteins belonging to the TGFß-stimulated clone 22 domain (TSC22D) family display a repertoire of activities, regulating cell proliferation and differentiation. The tumor suppressor activity of the first identified member of the family, TSC22D1 (formerly named TSC-22), has been extensively studied, but afterward a longer isoform encoded by the same gene turned out to play an opposite role. We have previously characterized the role of TSC22D1 and TSC22D4 in cell differentiation using granule neurons (GNs) isolated from the mouse cerebellum. However, the possibility to study the role of these factors in cell proliferation was limited by the fact that GNs readily exit from the cell-cycle and differentiate upon isolation and in vitro culture. To overcome this limitation, we have now exploited DAOY medulloblastoma cells, which are ontogenetically similar to cerebellar GNs and can be efficiently transfected with interfering RNA for gene knockdown purposes. Our findings indicate that TSC22D4-TSC22D1 short isoform heterodimers are involved in the escape from cell proliferation and exit from the cell-cycle, whereas, the TSC22D1 long isoform is required for cell proliferation, acting independently from TSC22D4. We also show that the silencing of specific expression of TSC22D4 or TSC22D1 isoforms affects the cell-cycle progression. These findings add a novel insight on the function of TSC22D proteins, with particular reference to the tumor suppressor activity of the TSC22D1 short isoform, which is re-framed within the context of a functional interplay with TSC22D4 and the mutually exclusive expression with the TSC22D1 long isoform.


Assuntos
Ciclo Celular/fisiologia , Neoplasias Cerebelares/metabolismo , Meduloblastoma/metabolismo , Domínios Proteicos/fisiologia , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Camundongos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...